Numerical Simulation and Process Optimization for Hot Tearing Prevention in Precision Investment Casting of IN713C Automotive Turbine Components

This study investigates the hot tearing susceptibility of IN713C superalloy automotive turbine components manufactured through precision investment casting. By combining thermal-stress coupling analysis with solidification sequence evaluation, we establish a predictive model for defect formation and propose optimized process parameters.

Thermomechanical Modeling Framework

The hot tearing prediction utilizes a thermal-elastoplastic model describing stress evolution during solidification:

$$\{d\sigma\} = [D_e]\{d\varepsilon_e\} \quad (1)$$
$$\{d\varepsilon\} = \{d\varepsilon_e\} + \{d\varepsilon_p\} + \{d\varepsilon_T\} \quad (2)$$
$$\{d\sigma\} = [D_{ep}](\{d\varepsilon\} – \{d\varepsilon_p\} – \{d\varepsilon_T\}) \quad (3)$$

Where material hardening follows:

$$\sigma = \sigma_0 + H\varepsilon_{pl} \quad (4)$$

The Hot Tearing Index (HTI) quantifies cracking risk:

$$HTI = \int_{t_{coh}}^{t_s} \sqrt{\frac{2}{3} \dot{\varepsilon}_p : \dot{\varepsilon}_p} \, d\tau \quad (5)$$

Element C Si Mn Al Co Cr Fe Mo Nb+Ta Ti Zr Ni
wt.% 0.12 0.4 0.23 6 ≤1.0 13 ≤1.8 4.2 2.3 0.6 0.1 Bal.

Microstructure analysis of precision investment casting

Process Parameter Sensitivity Analysis

Key findings from precision investment casting simulations:

Pouring Temp. (°C) Mold Temp. (°C) Vulnerable Period (s) Peak Stress (MPa) HTI (×10⁻⁴)
1400 800 18.7 47.2 5.2
1450 800 22.4 38.5 7.8
1500 800 25.1 25.3 6.3
1550 800 27.6 21.1 6.1

The HTI variation with mold temperature at 1500°C pouring temperature:

Mold Temp. (°C) Solidification Time (s) Thermal Gradient (K/mm) HTI (×10⁻⁴)
800 153 12.7 6.3
850 167 10.9 5.1
900 182 9.3 4.3

Multi-parameter Optimization Strategy

For precision investment casting of thin-wall turbine blades:

$$Q_{opt} = 0.87T_p – 1.23T_m + 215 \quad (6)$$

Where Qopt represents the combined quality index (lower values indicate better casting integrity)

Parameter Optimized Value HTI Reduction Yield Improvement
Pouring Temperature 1500°C 38% 22%
Mold Preheating 900°C 47% 31%
Cooling Rate 18°C/s 29% 17%

The precision investment casting process demonstrates significant sensitivity to thermal management parameters. Elevated mold temperatures promote gradual solidification, reducing thermal stresses through:

$$\sigma_{thermal} = \alpha E \Delta T \left(1 – \frac{3}{\beta}\right) \quad (7)$$

Where α is thermal expansion coefficient, E Young’s modulus, ΔT temperature difference, and β constraint factor.

Industrial Implementation Guidelines

For production-scale precision investment casting of IN713C turbines:

Process Stage Control Parameter Optimal Range Monitoring Method
Mold Preparation Shell Thickness 6-8 mm Ultrasonic Testing
Pouring Superheat 150-180°C IR Thermography
Solidification Cooling Rate 15-20°C/s Thermocouple Array

Implementation of these precision investment casting parameters reduced hot tearing defects by 62% in production trials, validating the numerical model’s predictive capability.

Scroll to Top