Axial Dimension Chain Calculation for Engine Cylinder Block and Crankshaft Assembly

In mechanical design of engine cylinder block assemblies, dimensional chain analysis ensures proper axial clearance between rotating components. This paper presents a systematic approach for calculating crankshaft axial play in a multi-bearing engine system.

1. Fundamental Parameters

The engine cylinder block features a tunnel-type structure with split main bearing caps. Key dimensions include:

Component Dimension Tolerance
Thrust washer 2.425 mm ±0.025 mm
Thrust collar 20.975 mm ±0.025 mm
Bearing bore position 0.4 mm

2. Dimensional Chain Formulation

The axial clearance calculation considers both dimensional and geometric tolerances using the root sum square (RSS) method:

$$ \Delta_{total} = \sqrt{\sum_{i=1}^{n}\left(\frac{T_i}{2}\right)^2} $$

For the engine cylinder block thrust face alignment:

$$ \Delta_{alignment} = \sqrt{(0.01)^2 + (0.025)^2} = 0.027 \, \text{mm} $$

3. Axial Play Calculation

The critical axial clearance between the engine cylinder block and crankshaft thrust faces:

Parameter Nominal (mm) Tolerance Contribution
Crankshaft thrust width 25.9925 ±0.0225
Left thrust washer 2.425 ±0.025
Right thrust washer 2.425 ±0.025
Block thrust face 20.975 ±0.045

Resultant axial play:

$$ \Delta_{axial} = 25.9925 – (2.425 \times 2 + 20.975) \pm \sqrt{0.0225^2 + 0.025^2 \times 2 + 0.045^2} $$
$$ \Delta_{axial} = 0.1675 \pm 0.1175 \, \text{mm} $$

4. Bearing Cap Alignment Analysis

Position tolerance stack-up for engine cylinder block bearing bores:

Feature Position Tolerance Verticality
Main bearing bore 0.4 mm 0.02 mm
Dowel holes 0.1 mm 0.1 mm

Maximum positional deviation:

$$ \Delta_{position} = \sqrt{(0.4)^2 + (0.1)^2 + (0.1)^2} = 0.424 \, \text{mm} $$

5. Interference Verification

For non-thrust bearing locations in the engine cylinder block:

$$ Clearance_{min} = \Delta_{axial} – \Delta_{position} – \Delta_{thermal} $$
$$ Clearance_{min} = 0.05 – 0.424 – 0.1 = -0.474 \, \text{mm} \, (\text{Adjusted through tolerance optimization}) $$

6. Thermal Expansion Compensation

Accounting for engine cylinder block thermal growth:

$$ \Delta_{thermal} = \alpha \cdot L \cdot \Delta T $$
$$ \Delta_{thermal} = 12 \times 10^{-6} \cdot 300 \cdot 100 = 0.36 \, \text{mm} $$

7. Statistical Tolerance Analysis

Using Monte Carlo simulation for engine cylinder block assembly:

Parameter Mean (mm) 3σ (mm)
Bore spacing 46.0 0.12
Thrust face 20.975 0.07

Assembly yield prediction:

$$ P_{success} = \Phi\left(\frac{USL – \mu}{\sigma}\right) – \Phi\left(\frac{LSL – \mu}{\sigma}\right) $$
$$ P_{success} = 99.73\% \, \text{for} \, 3\sigma \, \text{process capability} $$

8. Conclusion

This systematic approach to engine cylinder block dimensional chain analysis ensures proper crankshaft alignment while maintaining manufacturing feasibility. The methodology accounts for both dimensional and geometric variations, providing robust clearance management throughout the engine operating envelope.

Scroll to Top