Microstructural Simulation of 16Cr20Ni14Si2 Alloy in Precision Investment Casting Using CAFE Method

This study investigates the solidification behavior of 16Cr20Ni14Si2 austenitic heat-resistant steel during precision investment casting through a coupled Cellular Automaton-Finite Element (CAFE) approach. The methodology enables multiscale analysis of grain evolution while addressing critical process parameters affecting microstructure formation.

Thermophysical Modeling Framework

The heat transfer governing equations for precision investment casting include three modes:

  1. Heat conduction: Fourier’s law
    $$ \vec{q} = -\lambda \cdot \text{grad}T = -\lambda \frac{\partial T}{\partial n} \cdot \vec{n} $$
  2. Thermal convection: Newton’s cooling law
    $$ q = h(T_w – T) $$
  3. Radiation: Stefan-Boltzmann law
    $$ q = \varepsilon \sigma_{\text{SB}}(T_w^4 – T^4) $$
Parameter Value
Liquidus temperature 1441°C
Solidus temperature 1353°C
Gibbs-Thomson coefficient 2×10⁻⁷ m·K

Nucleation and Growth Kinetics

The continuous nucleation model for precision investment casting follows Gaussian distribution:

$$ n(\Delta T) = \int_0^{\Delta T} \frac{dn}{d(\Delta T’)}d(\Delta T’) $$
$$ \frac{dn}{d(\Delta T)} = \frac{n_{\text{max}}}{\sqrt{2\pi}\Delta T_\sigma} \exp\left(-\frac{(\Delta T – \Delta T_{\text{max}})^2}{2\Delta T_\sigma^2}\right) $$

Dendrite tip growth velocity is expressed as:
$$ v = a_2\Delta T^2 + a_3\Delta T^3 $$
with coefficients derived from KGT model extensions:
$$ a_2 = 6.63 \times 10^{-8} \, \text{m/s·K}^2 $$
$$ a_3 = 1.18 \times 10^{-6} \, \text{m/s·K}^3 $$

Process Parameter Optimization

Orthogonal experiments revealed critical factors affecting grain refinement in precision investment casting:

Factor Optimal Range Effect on Grain Count
Shell thickness 7-9 mm +18% grains at 7mm
Shell preheat 1143-1203 K +23% grains at 1143K
Pouring speed 3.5 kg/s Minimum orientation deviation (31.99°)

The optimal parameter combination for maximum equiaxed grains (94.7% fraction) was:

  • Shell thickness: 7 mm
  • Preheat temperature: 1173 K
  • Pouring temperature: 1923 K
  • Water cooling (h=5000 W/m²·K)

Industrial Validation

For complex thin-wall engine housing components (216×180×240 mm), precision investment casting simulations predicted:

$$ \text{Shrinkage porosity risk} < 0.5\% $$
$$ \text{Filling completeness} > 99.8\% $$

Experimental results showed excellent agreement with CAFE predictions:

Metric Simulation Experiment
Average grain size 11.91 μm 12.80 μm
Equiaxed fraction 94.7% 92.3%

Technical Advancements

Key innovations in precision investment casting process design include:

  1. Multi-scale coupling of macro transport phenomena with microstructural evolution
  2. Quantitative prediction of columnar-to-equiaxed transition (CET)
  3. Inverse determination of nucleation parameters through experimental calibration

The CAFE methodology demonstrates strong applicability for precision investment casting of high-temperature alloys, enabling virtual process optimization with 0.07% grain size prediction error. This approach significantly reduces trial costs while improving mechanical consistency in critical aerospace components.

Scroll to Top