
This paper presents a comprehensive methodology for producing large-scale ductile iron castings through the case study of a 38-ton punch disc. The chemical composition design, casting process optimization, and digital simulation verification demonstrate effective solutions for overcoming challenges in thick-section ductile iron production.
1. Chemical Composition Design
The chemical formula for carbon equivalent (CE) is critical for ductile iron casting quality:
$$ CE = C + \frac{1}{3}(Si + P) $$
For punch discs requiring QT500-7 properties, the optimized composition is:
| Element | Base Iron | After Treatment |
|---|---|---|
| C | 3.5-3.7 | 3.4-3.6 |
| Si | 1.4-1.5 | 2.0-2.4 |
| Mn | 0.35-0.45 | 0.35-0.45 |
| P | ≤0.02 | ≤0.02 |
| S | ≤0.01 | 0.006-0.01 |
| Mgres | – | 0.035-0.055 |
2. Casting Process Design
The solidification time (t) for thick-section ductile iron casting follows Chvorinov’s rule:
$$ t = k \left(\frac{V}{A}\right)^n $$
Where:
k = mold constant (1.0-1.2 for resin sand)
V = casting volume
A = cooling surface area
n = 1.5-2.0 (empirical constant)
| Parameter | Value |
|---|---|
| Pouring Temperature | 1300-1330°C |
| Mold Material | Furan resin sand |
| Gating Ratio | 1:1.2:0.8 |
| Cooling Rate | 15-25°C/min |
| Inoculant Addition | 0.6-0.8% |
3. Digital Simulation Verification
The fluid dynamics equation for mold filling analysis:
$$ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 $$
$$ \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g} $$
Key simulation results:
| Stage | Filling Time (s) | Velocity (cm/s) | Oxide Content (g/cm³) |
|---|---|---|---|
| 14% Filled | 12 | 160 | 4.2 |
| 40% Filled | 26 | 51 | 3.8 |
| Complete | 43 | 28 | 3.58 |
4. Production Validation
The final ductile iron casting achieved:
$$ \sigma_b = 535\ MPa,\ \delta = 5.5\% $$
Microstructure parameters:
| Parameter | Requirement | Actual |
|---|---|---|
| Graphite Sphericity | ≥90% | 95.42% |
| Nodule Count | ≥100/mm² | 125/mm² |
| Pearlite Content | ≤20% | 15% |
5. Process Optimization Guidelines
For successful ductile iron casting production:
$$ \text{Cooling Rate} = \frac{T_{\text{pour}} – T_{\text{solidus}}}{t_{\text{solidification}}} $$
- Maintain Mgres = 0.035-0.055% with Y-based rare earth treatment
- Implement multi-stage inoculation: 0.6% pre-inoculation + 0.2% stream inoculation
- Control CE = 4.0-4.2 through precise C/Si ratio adjustment
- Optimize gating design using velocity criterion: 50-150 cm/s
This methodology demonstrates that proper control of metallurgical parameters combined with advanced simulation techniques enables reliable production of heavy-section ductile iron castings for high-stress applications.
