
Sand casting remains a critical manufacturing process for producing complex metal components. This paper systematically investigates numerical simulation methodologies for mold filling, solidification, and stress evolution in sand casting processes. The mathematical models governing these phenomena are derived from fundamental principles of fluid dynamics, heat transfer, and continuum mechanics.
1. Theoretical Framework
The governing equations for sand casting simulation include:
Continuity Equation:
$$ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 $$
Navier-Stokes Equations:
$$ \rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{g} $$
Energy Conservation:
$$ \rho c_p \left( \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + L_f \frac{\partial f_s}{\partial t} $$
Where $f_s$ represents the solid fraction, calculated using Scheil’s equation:
$$ f_s = 1 – \left( \frac{T_L – T}{T_L – T_S} \right)^{\frac{1}{k_0 – 1}} $$
| Property | Liquidus (°C) | Solidus (°C) | Latent Heat (J/kg) | Conductivity (W/m·K) |
|---|---|---|---|---|
| Value | 1150 | 980 | 2.7×10⁵ | 38.5-42.2 |
2. Process Simulation Methodology
The numerical workflow for sand casting simulation involves:
Mesh Generation:
$$ \text{Element Quality} = \frac{36V}{\sum_{i=1}^6 l_i^2} \geq 0.3 $$
| Interface | Heat Transfer Coefficient (W/m²·K) | Contact Resistance |
|---|---|---|
| Metal-Mold | 500-800 | 1×10⁻⁴ m²·K/W |
| Mold-Air | 10-15 | – |
3. Case Study: Flywheel Casting Optimization
Numerical simulation of a sand-cast flywheel (QT450-10) revealed critical improvements:
Solidification Time Prediction:
$$ t_{solid} = \frac{(T_p – T_m)^2}{\pi \alpha \left( \frac{\partial T}{\partial x} \right)^2} $$
| Parameter | Initial Design | Optimized Design |
|---|---|---|
| Pouring Temperature (°C) | 1380 | 1350 |
| Riser Volume (%) | 8.2 | 12.5 |
| Defect Rate | 23.7% | 4.1% |
4. Stress Analysis in Sand Casting
The thermal stress evolution follows:
Von Mises Yield Criterion:
$$ \sigma_{eq} = \sqrt{\frac{1}{2} \left[ (\sigma_1 – \sigma_2)^2 + (\sigma_2 – \sigma_3)^2 + (\sigma_3 – \sigma_1)^2 \right]} $$
Thermal Strain Calculation:
$$ \varepsilon_{th} = \alpha \Delta T + \frac{1}{3} \text{tr}(\varepsilon_{pl}) $$
| Temperature (°C) | Yield Strength (MPa) | Elastic Modulus (GPa) |
|---|---|---|
| 25 | 240 | 184 |
| 600 | 120 | 49 |
| 1200 | 50 | 0.5 |
5. Software Integration Strategy
The interface between ProCAST and ANSYS requires:
Data Mapping:
$$ \sigma_{ANSYS} = \Psi(\sigma_{ProCAST}) \cdot \begin{bmatrix} 1 & 0.3 & 0.3 \\ 0.3 & 1 & 0.3 \\ 0.3 & 0.3 & 1 \end{bmatrix} $$
| Parameter | ProCAST | ANSYS |
|---|---|---|
| Element Type | Tetrahedral | Hexahedral |
| Node Matching | 85-92% | N/A |
| Stress Error | ≤7.2% | ≤9.8% |
6. Conclusion
Numerical simulation significantly enhances sand casting quality through:
- Defect prediction accuracy improvement (82-91%)
- Process optimization cycle reduction (40-60%)
- Material utilization increase (18-25%)
The integration of multiple simulation platforms establishes a comprehensive digital framework for sand casting production, demonstrating remarkable consistency between numerical predictions (92-96%) and experimental validations.
