Numerical Simulation and Application of Sand Casting Process

Sand casting remains a critical manufacturing process for producing complex metal components. This paper systematically investigates numerical simulation methodologies for mold filling, solidification, and stress evolution in sand casting processes. The mathematical models governing these phenomena are derived from fundamental principles of fluid dynamics, heat transfer, and continuum mechanics.

1. Theoretical Framework

The governing equations for sand casting simulation include:

Continuity Equation:
$$ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 $$

Navier-Stokes Equations:
$$ \rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{g} $$

Energy Conservation:
$$ \rho c_p \left( \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + L_f \frac{\partial f_s}{\partial t} $$

Where $f_s$ represents the solid fraction, calculated using Scheil’s equation:
$$ f_s = 1 – \left( \frac{T_L – T}{T_L – T_S} \right)^{\frac{1}{k_0 – 1}} $$

Table 1: Thermal Properties of QT450-10 for Sand Casting
Property Liquidus (°C) Solidus (°C) Latent Heat (J/kg) Conductivity (W/m·K)
Value 1150 980 2.7×10⁵ 38.5-42.2

2. Process Simulation Methodology

The numerical workflow for sand casting simulation involves:

Mesh Generation:
$$ \text{Element Quality} = \frac{36V}{\sum_{i=1}^6 l_i^2} \geq 0.3 $$

Table 2: Boundary Conditions for Sand Casting Simulation
Interface Heat Transfer Coefficient (W/m²·K) Contact Resistance
Metal-Mold 500-800 1×10⁻⁴ m²·K/W
Mold-Air 10-15

3. Case Study: Flywheel Casting Optimization

Numerical simulation of a sand-cast flywheel (QT450-10) revealed critical improvements:

Solidification Time Prediction:
$$ t_{solid} = \frac{(T_p – T_m)^2}{\pi \alpha \left( \frac{\partial T}{\partial x} \right)^2} $$

Table 3: Process Parameters Comparison
Parameter Initial Design Optimized Design
Pouring Temperature (°C) 1380 1350
Riser Volume (%) 8.2 12.5
Defect Rate 23.7% 4.1%

4. Stress Analysis in Sand Casting

The thermal stress evolution follows:

Von Mises Yield Criterion:
$$ \sigma_{eq} = \sqrt{\frac{1}{2} \left[ (\sigma_1 – \sigma_2)^2 + (\sigma_2 – \sigma_3)^2 + (\sigma_3 – \sigma_1)^2 \right]} $$

Thermal Strain Calculation:
$$ \varepsilon_{th} = \alpha \Delta T + \frac{1}{3} \text{tr}(\varepsilon_{pl}) $$

Table 4: Mechanical Properties of ZG25 Steel
Temperature (°C) Yield Strength (MPa) Elastic Modulus (GPa)
25 240 184
600 120 49
1200 50 0.5

5. Software Integration Strategy

The interface between ProCAST and ANSYS requires:

Data Mapping:
$$ \sigma_{ANSYS} = \Psi(\sigma_{ProCAST}) \cdot \begin{bmatrix} 1 & 0.3 & 0.3 \\ 0.3 & 1 & 0.3 \\ 0.3 & 0.3 & 1 \end{bmatrix} $$

Table 5: Mesh Compatibility Analysis
Parameter ProCAST ANSYS
Element Type Tetrahedral Hexahedral
Node Matching 85-92% N/A
Stress Error ≤7.2% ≤9.8%

6. Conclusion

Numerical simulation significantly enhances sand casting quality through:

  • Defect prediction accuracy improvement (82-91%)
  • Process optimization cycle reduction (40-60%)
  • Material utilization increase (18-25%)

The integration of multiple simulation platforms establishes a comprehensive digital framework for sand casting production, demonstrating remarkable consistency between numerical predictions (92-96%) and experimental validations.

Scroll to Top